New permutation trinomials from Niho exponents over finite fields with even characteristic
نویسندگان
چکیده
منابع مشابه
New Permutation Trinomials From Niho Exponents over Finite Fields with Even Characteristic
In this paper, a class of permutation trinomials of Niho type over finite fields with even characteristic is further investigated. New permutation trinomials from Niho exponents are obtained from linear fractional polynomials over finite fields, and it is shown that the presented results are the generalizations of some earlier works.
متن کاملSeveral Classes of Permutation Trinomials over $\mathbb F_{5^n}$ From Niho Exponents
The construction of permutation trinomials over finite fields attracts people’s interest recently due to their simple form and some additional properties. Motivated by some results on the construction of permutation trinomials with Niho exponents, by constructing some new fractional polynomials that permute the set of the (q + 1)-th roots of unity in Fq2 , we present several classes of permutat...
متن کاملNew classes of permutation binomials and permutation trinomials over finite fields
Permutation polynomials over finite fields play important roles in finite fields theory. They also have wide applications in many areas of science and engineering such as coding theory, cryptography, combinational design, communication theory and so on. Permutation binomials and trinomials attract people’s interest due to their simple algebraic form and additional extraordinary properties. In t...
متن کاملSome New Permutation Polynomials over Finite Fields
In this paper, we construct a new class of complete permutation monomials and several classes of permutation polynomials. Further, by giving another characterization of opolynomials, we obtain a class of permutation polynomials of the form G(x) + γTr(H(x)), where G(X) is neither a permutation nor a linearized polynomial. This is an answer to the open problem 1 of Charpin and Kyureghyan in [P. C...
متن کاملSymmetric bilinear forms over finite fields of even characteristic
Let Sm be the set of symmetric bilinear forms on an m-dimensional vector space over GF(q), where q is a power of two. A subset Y of Sm is called an (m, d)-set if the difference of every two distinct elements in Y has rank at least d. Such objects are closely related to certain families of codes over Galois rings of characteristic four. An upper bound on the size of (m, d)-sets is derived, and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cryptography and Communications
سال: 2018
ISSN: 1936-2447,1936-2455
DOI: 10.1007/s12095-018-0321-6